Received: November 16, 1989; accepted February 1, 1990

## PRELIMINARY NOTE

## The Synthesis from 2.5-Dichloro-1.1.1.6.6.6-hexafluoro-3.4-diazahexa-2.4- diene of 4H-3.5-Bis(trifluoromethyl)-1.2.4-triazole and some 1- and 4-Substituted Derivatives

MOHAMAD ABDUL-GHANI AND ANTHONY EDGAR TIPPING\*

Department of Chemistry, The University of Manchester Institute of Science and Technology, Manchester M60 1QD (U.K.)

## SUMMARY

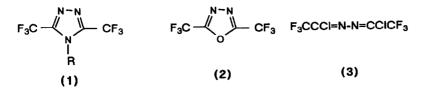
Treatment of the title azine (3) with an excess of ammonia or ethyl glycinate affords the corresponding diaminoazines (4a) and (4b), which undergo thermal cyclisation to give ammonium 3,5-bis(trifluoromethyl)1-2,4-triazolate (6a) [from which the parent  $4\underline{H}$ -1,2,4-triazole (1a) can be liberated by aqueous acid treatment] and 4-carboethoxymethyl-3,5-bis(trifluoromethyl)-1,2,4-triazole (1e), respectively in high yield. Reaction of the  $4\underline{H}$ -1,2,4-triazole (1a) with ethyl propynoate and of its sodium salt (6b) with ethyl bromoethanoate and pentafluoropyridine yield the acrylate (7a)-, carboethoxymethyl (7b)- and fluoropyridyl (9-11)- derivatives of  $1\underline{H}$ -3,5-bis(trifluoromethyl)-1,2,4-triazole with competing attack on the pentafluoropyridine ring taking place at the 2- and 4-positions.

 $4\underline{H}$ -3,5-Bis(trifluoromethyl)-1,2,4-triazole (1a) and its 4-methyl derivative (1b) were first synthesised from the oxadiazole (2) via reaction with ammonia and methylamine, respectively [1], and this route has been extended recently to the preparation of a wide range of 4-alkyl-, 4-alkenyl- and 4-aryl-1,2,4-triazoles [2].

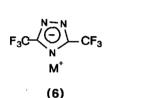
In a previous communication we reported the reactions of 2,5-dichloro-1,1,1,6,6,6-hexafluoro-3,4-diazahexa-2,4-diene (3) with a variety of nucleophiles including primary amines and described the preparation of 4-phenyl (1c)- and 4-(2,6-dichloropyridyl)methyl (1d)- triazoles [3].

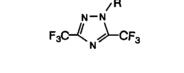
<sup>\*</sup> To whom enquiries should be addressed.

We now report the synthesis of the parent 4<u>H</u>-1,2,4-triazole (1a) and its 4carboethoxymethyl derivative (1e) by the same route from azine (3) and the conversion of triazole (1a) into certain derivatives of 1<u>H</u>-3,5-bis(trifluoromethyl)-1,2,4-triazole.


Reaction of dichloroazine (3) with an excess of aqueous ammonia or ethyl glycinate in diethyl ether at room temperature afforded the diaminoazine (4a) (95%) and a mixture of the monoglycinatoazine (5) (16%) and diglycinatoazine (4b) (75%) respectively. Thermolysis of the diaminoazines (4a) and (4b) in a sealed tube in vacuo at ca. 150 °C gave ammonium 3,5-bis(trifluoromethyl)-1,2,4-triazolate (6a) (98%) and 4-carboethoxymethyl-3,5-bis(trifluoromethyl)-1,2,4-triazole (1e) (82%) respectively. Treatment of the salt (6a) with 4M hydrochloric acid yielded the  $4\underline{H}$ -triazole (1a) (75%).

Thus, the reaction of the dichloroazine (3) with primary amines followed by thermal cyclisation of the resulting diaminoazines provides a satisfactory alternative general route to that from the oxadiazole (2) [2] for the preparation of 4-substituted-3,5-bis(trifluoromethyl)-1,2,4-triazoles.


The reaction of triazole (1a) with ethyl propynoate was investigated to determine whether the triazole was an effective nucleophile for Michael addition and whether attack on the substrate would involve N-1 or N-4. A mixture of (1a) and ethyl propynoate heated in vacuo in a sealed tube at 120 °C (14 days) gave the Michael adduct, ethyl 3-[1 $\pm$ -3,5-bis(trifluoromethyl)-1,2,4-triazolino]acrylate (7a) (95%), as a mixture of the (E)- and (Z)-isomers (ratio 46:49) which were separated by dry column flash chromatography (DCFC) (eluant:n-C<sub>6</sub>H<sub>14</sub>/CHCl<sub>3</sub> 1:1 v/v). This reaction occurred exclusively at N-1 of the triazole ring possibly due to N-4 being  $\beta$  to two strongly electron-withdrawing CF<sub>3</sub> groups which reduce the availability of the lone pair on N-4 and sterically hinder reaction at this position; N-1 is  $\beta$  to only one CF<sub>3</sub> group., It has been reported that reaction of the 4<u>H</u>-1,2,4-triazole (8) with N-chloromethylacetanilides afforded 4-substituted triazoles [4].

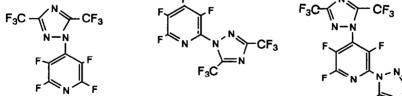

The resonance-stabilised salts of 3,5-disubstituted-1,2,4-triazoles undergo reaction at N-1 because of the greater nucleophilicity of the N-N linkage relative to N-4 [5]. Therefore, the reactions of the sodium salt (6b) [prepared by treatment of triazole (1a) with sodium hydride in diethyl ether or THF] with ethyl bromoethanoate [a potential route to the 1-substituted isomer (7b) of triazole (1e)] and with pentafluoropyridine (to determine if nucleophilic attack at the 2-position of the pyridine ring could compete with 'normal' attack at the 4-position) were investigated.

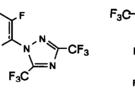
Treatment of salt (6b) with ethyl bromoethanoate at room temperature in diethyl ether gave 1-carboethoxymethyl-3,5-bis(trifluoromethyl)-1,2,4-triazole (7b) (87%), while with pentafluoropyridine in THF heated under reflux a mixture was

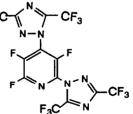


a, R = Hb, R = Mec R = Ph CI  $F_3CCR=N-N=CRCF_3$   $F_3CCCI=N-N=CCF_3$   $F_3CCCI=N-N=CCF_3$   $HCH_2CO_2Et$ (4) (5) **c**,  $\mathbf{R} = \mathbf{Ph}$  cl **d**,  $\mathbf{R} = \mathbf{CH}_2$ ,  $\mathbf{N}$ cl **a**,  $R = NH_2$ **b**,  $R = NHCH_2CO_2Et$ e.  $R = CH_2CO_2Et$ 







a, M = NH₄ b. M = Na

b,  $R = CH_2CO_2Et$ 

(7)









(11)

formed from which the major products were separated by DCFC (eluant  $n-C_6H_{14}$ ) and identified as the 4-triazolinotetrafluoropyridine (9) (19%), the 2-triazolinotetrafluoropyridine (10) (5%) and the 2,4-bis(triazolino)trifluoropyridine (11) (6%) all formed via attack by N-1 of the triazolate on the pyridine ring.

It has been reported recently [6] that treatment of the sodium or potassium salts of the oximates RR'C=NOH (R=R'=Me; R=R'=Ph; R=Me, R'=Ph) and the lithium salts of the hydrazones  $Ph_2C=NNHR$  (R=H or Ph) with pentafluoropyridine afforded mixtures of the corresponding 2- and 4-substituted tetrafluoropyridines in contrast to reaction with other nucleophiles which involved exclusive initial attack in the 4-position [7]. The present reaction involving the salt (6b) thus extends the examples of nucleophiles which attack the 2-position of pentafluoropyridine in competition with the 4-position.

Further reactions of triazole (1a) and its sodium salt (6b) are under investigation and will be reported in due course in a full paper.

All products possessed satisfactory elemental compositions and their structures were determined spectroscopically [i.r., n.m.r. (1H, 13C, 19F) and mass].

We thank the committee of Vice Chancellors and Principals for an O.R.S. award (to M. A-G.).

- 1 H.C. Brown and M.T. Cheng, <u>J. Org. Chem.</u>, <u>27</u> (1962) 3240.
- 2 D.B. Reitz and M.J. Finkes, J. Heterocyclic Chem., 26 (1989) 225.
- 3 M.G. Barlow, D. Bell (in part), N.J. O'Reilly and A.E. Tipping, <u>J. Fluorine</u> <u>Chem., 23</u> (1983) 293.
- 4 R. Thomas, W. Draber, R.R. Schmidt, L. Eue and J. Stetter, <u>Ger.</u> <u>Offen.</u> 2 704 281 (1978); Chem. Abstr., 89 (1978) 163578w.
- 5 Carroll Temple, Jr., 'The Chemistry of Heterocyclic Compounds, Vol. 37, Triazoles, 1,2,4', Ed. J.A. Montgomery, John Wiley - Interscience, New York, 1981.
- R.E. Banks, W.J. Jondi and A.E. Tipping, <u>J. Chem. Soc., Chem. Commun.</u>, (1989) 1268.
- 7 R.D. Chambers, J.S. Waterhouse and D.L.H. Williams, <u>J. Chem. Soc.Perkin</u> <u>Trans. II.</u> (1977) 585.